ARTICLES OF ASSOCIATION OF

Beijing Jingneng Clean Energy Co., Limited

北京京能清潔能源電力股份有限公司 (Lnc, 1, a ed , n e Pe, 1 e' Rel, b, c, f C , na , 1 ¬ , ed ¬ab, 1)

Contents

1 m		1
× ×2		3
× 13	The Same That I have the	4
× 44	Carolina Carolina Carolina	8
× .55	- NACE AND ACTION OF THE PROPERTY OF THE PROPE	12
× 16	The distance buy the special of	13
× .57	Carried State of the state of t	17
× 18		22
, ₁ , 1	Contract Contract Contract	22
2	There I was a second of the second	24
, , 3	The water of the water	26
, ₁ , 4		28
, , 5	Charle Collection Care	33
× .79	- Call to the town the law of the	35
× × 10	Landani Company	38
× 111		39
, ₁ , 1		39
2	a contract of the the	41
, , 3		42
× 12		48
× × 13	The state of the s	50
14سير	$\sim \sim $	52

15	$\frac{1}{\sqrt{2}}e^{i\omega_{1}}$, $1 = e^{i\omega_{2}}$, $e^{i\omega_{2}}$	53
, ₁ , 1	1-1- No.	53
, ₁ , 2	A Company of the Comp	53
× ~16	TAIR A A MANAGE OF THE ANGLE OF	56
× ~17	$=_{\Gamma_{\mathbf{A}^{(i)}}, \mathbf{A}_{\mathbf{A}^{(i)}}} \mathbf{A}_{-, \Gamma_{i}, \Gamma_{i}, \Gamma_{i}} \cdots \mathbf{A}_{\mathbf{A}^{(i)}, \Gamma_{i}, \Gamma_{i}, \Gamma_{i}} \cdots \mathbf{A}_{\mathbf{A}^{(i)}, \Gamma_{i}, \Gamma_{i}, \Gamma_{i}} \cdots \mathbf{A}_{\mathbf{A}^{(i)}, \Gamma_{i}, \Gamma_{i}, \Gamma_{i}, \Gamma_{i}, \Gamma_{i}} \cdots \mathbf{A}_{\mathbf{A}^{(i)}, \Gamma_{i}, \Gamma_{i},$	63
× ~18	\mathbf{A}_{-1} \mathbf{A}_{-1} \mathbf{A}_{-1} \mathbf{A}_{-1} \mathbf{A}_{-1} \mathbf{A}_{-1}	66
× 19	did, Irni, mil mix politini	69
, ₁ , 1	Section 1 Pro	69
2	T_{i+1} Γ_{i+1} T_{i+1} Γ_{i+1} Γ_{i+1} Γ_{i+1} Γ_{i+1}	70
~~~20	$\mathbf{A}_{lass}$ , $lass$ , $\mathbf{A}_{lass}$ , $\mathbf{A}_{lass}$	72
× ×21	* · · ·	73
~ ~ ~ 22	' I'lm' ' ' F ⁻¹ '.	75
23	11' lw \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	76

# Chapter 1 General

# Article 1

### Article 2

# Article 3

# Article 5

and the contract of the contra

### Article 6

LOGICAL LANGE CONTRACTOR OF THE PROPERTY OF TH

### Article 7

 $\frac{A_{11}}{A_{12}} = \frac{1}{2} \frac{1}{2}$ 

### Article 8

# Article 9

-Company of a first of the Artificial Action o

 $\frac{1}{4}\left(1-\frac{6\pi}{3}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right$ 

 $= (\sum_{i=1}^{n} \sum_{i=1}^{n} \sum$ 

### Article 10

TAIL THE STATE OF THE STATE OF

TO SECURE A SECURE OF THE SECU

# Article 11

The state of the s

### Article 12

 $\frac{1}{2} = \lim_{N \to \infty} \frac{1}{N} \lim_{N \to \infty} \frac{1}{N}$ 

# **Chapter 2** Operational Objectives and Scope

### Article 13

AN CHECK TO A CONTROL OF THE AND A CONTROL OF THE A

# Article 14

The second secon

 $\frac{1}{2} \frac{1}{2} \frac{1}$ 

# Chapter 3 Shares, Registered Capital and Transfer of Shares

### Article 15

 $\frac{1}{2} \left( \frac{1}{2} \left$ 

### Article 16

### Article 17

OMENIO AND CONTROL CON

 $= \underbrace{C_{2} \cdot \mathbf{x}_{\mathbf{M}} \cdot \mathbf{$ 

### Article 18

The state of the s

# Article 19

The state of the s

And the second of the second

### Article 20

 $= \prod_{i=1}^{n} \frac{1}{n} \frac{1}{n$ 

27,600,000 26, 6.6. (a) 0.552%

A A A 153,450,000 ... 3.069% ... 3.069% ... 3.069% ...

### Article 21

A (2011) (635)

2,464,285,500 H

H

15%

114,990,546

114,990,546

114,990,546

114,990,546

114,990,546

114,990,546

114,990,546

114,990,546

2018, 2018, 2018.

5,081,793,482 (m/s), 61.639% (m/s), 61.639% (m/s)

 $\frac{1}{4} \left( \frac{1}{4} \left( \frac{1}{4} \left( \frac{1}{4} \left( \frac{1}{4} \right) \right) \right) \right) = 2,829,676,800 \left( \frac{1}{4} \left( \frac{1$ 

# Article 22

# Article 23

A strong to the part of the property of the property of the property of the part of the p

 $\frac{1}{1000} \left( \frac{1}{100} \left( \frac{1}{100} \right) \right) \left( \frac{1}{100} \left( \frac$ 

### Article 24

 $\frac{\partial \mathcal{L}_{1}}{\partial x} = \frac{\partial \mathcal{L}_{2}}{\partial x} + \frac{\partial \mathcal{L}_{1}}{\partial x} + \frac{\partial \mathcal{L}_{2}}{\partial x} + \frac{\partial \mathcal{L}_{1}}{\partial x} + \frac{\partial \mathcal{L}_{2}}{\partial x} + \frac{\partial \mathcal{L$ 

# Article 25

8,244,508,144.

The configuration of the text of the text

### Article 27

TO SEE COMMITTEE STATE OF THE SECOND STATE OF

### Article 28

CATING THE RESERVE OF THE RESERVE OF

# Article 29

 $\frac{1}{2} \int_{\mathbb{R}^{N}} \left( \frac{1}{2} \int_{\mathbb{R}^{N}} \frac{1}$ 

The property of the second property of the se

# **Chapter 4** Increase, Reduction and Repurchase of Shares

### Article 30

The state of the s

- $(1) = \mathbf{K}_{\mathbf{q}_{1} \dots \mathbf{q}_{k}, \mathbf{q}_{k}} \mathbf{I}_{\mathbf{X}^{(k)} \dots \mathbf{q}_{k}, \mathbf{q}_{k}};$
- (2)  $\chi(\cdot,\cdot) = (\cdot_{[1-\lambda]}, \cdot)_{\chi(\cdot)} \cdot (\cdot,\cdot)_{\chi(\cdot)}, \quad (\cdot,\chi(\cdot),\cdot)_{\chi(\cdot)};$
- $(3) \qquad {}_{V} \stackrel{\mathcal{F}}{\leftarrow} 1_{-V} \stackrel{\circ}{\leftarrow} \cdots \stackrel{\circ}{\leftarrow} 1_{+V} \stackrel{\circ}{\leftarrow} \stackrel{\circ}$
- (4) Indeed C. C. T. Ind.
- (5) May Company of Company of the Marine Marine

### Article 31

### Article 32

was the same of th

AND THE RESIDENCE OF TH

with the transfer of the trans

- $(1) = \frac{1}{\mathbf{X}^{N-1} | \mathbf{X}^{N-1} |} \cdot \frac{1}{\mathbf{X}^{N-1}} \cdot \frac{\mathbf{X}^{N-1} \mathbf{X}^{N-1}}{\mathbf{X}^{N-1}} \cdot \frac{\mathbf{X}^{N-1}}{\mathbf{X}^{N-1}} \cdot \frac{\mathbf{X}^{N-1}}{\mathbf{X}^{N-$
- $(3) \quad \underset{\prod^{n} \in \mathcal{N}}{\prod^{n}} \mathcal{L}_{\mathcal{N}} \mathcal{L}_{\mathcal{N}}$
- $(4) \quad A_{\mathbf{1}_{1} \mathbf{1}_{1} \mathbf{1}_{1} \cdots \mathbf{1}_{n}} \underbrace{(A_{\mathbf{1}_{1} \mathbf{1}_{1} \mathbf{1}_{1} \cdots \mathbf{1}_{n}})}_{\mathbf{1}_{1} \mathbf{1}_{1} \mathbf{1}_{1} \cdots \mathbf{1}_{n} \mathbf{1}_{n} \mathbf{1}_{n} \cdots \mathbf{1}_{n}} \underbrace{(A_{\mathbf{1}_{1} \mathbf{1}_{1} \cdots \mathbf{1}_{n} \mathbf{1}_{n} \mathbf{1}_{n} \cdots \mathbf{1}_{n} \mathbf{1}_{n} \cdots \mathbf{1}_{n} \mathbf{1}_{n} \mathbf{1}_{n} \cdots \mathbf{1}_{n} \mathbf{1}_{n} \mathbf{1}_{n} \cdots \mathbf{1}_{n} \cdots \mathbf{1}_{n} \mathbf{1}_{n} \cdots \mathbf{1}_{n} \mathbf{1}_{n} \cdots \mathbf{1}_{n} \mathbf{1}_{n} \cdots \mathbf{1}_{n} \cdots \mathbf{1}_{n} \mathbf{1}_{n} \cdots \mathbf{1}_{n}$
- (5)  $\prod_{i \in \mathcal{I}_{i}} \sum_{i \in \mathcal{I}_{i}} \mathcal{L}_{i,i} = \mathcal{L$

 $C_{-1} C_{\frac{1}{2}} C_{-1} C_{\frac{1}{2}} C_{-1} C_{\frac{1}{2}} C_{-1} C_{\frac{1}{2}} C_{-1} C_{\frac{1}{2}} C_{\frac{$ 

### Article 34

TATE A COMPLEX SAIR CONTROL OF CARLES OF A MARKET MATERIAL AND A CONTROL OF A CONTROL OF A MARKET MATERIAL AND A CONTROL OF A CONTROL OF A MARKET MATERIAL AND A CONTROL OF A CONTROL OF A MARKET MATERIAL AND A CONTROL OF A CONTROL O

- $(1) = \frac{k}{\sqrt{k}} \sum_{i=1}^{k} C_{i-1} C_{i-1} C_{i-1} \cdots C_{i-1} \cdots C_{i-1} \cdots C_{i-1} C_{i-1} \cdots C$
- (2)  $\psi_{\alpha}(\mathcal{E}_{\mathbf{X}}, \mathcal{E}_{\mathbf{X}}, \mathcal{E}_{\mathbf{X}}, \mathcal{E}_{\mathbf{X}, \mathbf{X}, \mathbf{Y}, \dots, \mathbf{X}}, \mathcal{E}_{\mathbf{X}, \mathbf{Y}, \dots, \mathbf{Y}}, \mathcal{E}_{\mathbf{X}, \mathbf{Y}}, \mathcal{E}_{\mathbf{X}}, \mathcal{E$
- (4) Marion Contractor and Contractor of the

 $\frac{1}{2} \left( \frac{1}{2} \left$ 

I The the time of the the the the the time of the the the the the time of time of the time of time of the time of time of time of the time of time

AND THE STATE OF THE STATE OF THE AND THE AND THE AND THE STATE OF THE

# Article 36

(5), (6), A (1), A (1),

### Article 37

From In the work of the first o

Market Committee Committee

 $\frac{1}{n} \left( \frac{1}{n} + \frac{1}{n} \frac{1}{n} \frac{1}{n} + \frac{1}{n} \frac{1}{n} \frac{1}{n} + \frac{1}{n} \frac{1}{n} \frac{1}{n} + \frac{1}{n} \frac{1}{n} \frac{1}{n} \frac{1}{n} + \frac{1}{n} \frac{1}{n} \frac{1}{n} \frac{1}{n} + \frac{1}{n} \frac{1}$ 

- $(1) \qquad (1) \qquad (1) \qquad (1) \qquad (1) \qquad (2) \qquad (3) \qquad (4) \qquad (4)$
- $(2) \qquad \underset{k \to \infty}{\text{(2)}} \qquad \underset{k \to$
- (3)  $\lim_{\lambda \to \infty} \frac{1}{|X_{\lambda}|^{2}} = \lim_{\lambda \to \infty} \frac{1}{|X_{\lambda}|^{2}} =$ 
  - $1, \qquad A_{-1} r_{_{YMY}}, \qquad \mathcal{C}_{C} r_{_{1}}, \qquad \ldots, \qquad k_{_{M}}, \qquad \mathcal{C}_{C};$
  - $2. \qquad \underset{\text{law}}{A}_{\text{law}}, \quad \underset{\text{law}}{\text{law}}, \quad \underset{\text{law}}{\text{law}},$
- $(4) \quad A \quad \mathcal{L} = \underbrace{\mathbf{L}}_{\mathbf{k}} \cdot \underbrace{\mathbf{$

# **Chapter 5** Financial Assistance for Purchase of Company Shares

#### Article 39

 $\frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \right) \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left$ 

The summation of the literature for the literature of the summation of the

 $(A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i_2,\ldots,i_N},A_{i_1,i$ 

# Article 40

 $= \langle \langle \rangle \rangle = \langle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \langle$ 

- (1) ;
- $(2) = \frac{1}{2} \int_{\mathbb{R}^{n}} \frac$
- (3) The service of th

 $-(C_{1}-1)C_{1},\ldots,c_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_{N}-1-C_$ 

### Article 41

The state of the s

- (2)  $_{\mathbf{F}_{\mathbf{A}}}$   $_{\mathbf{1}}$   $_{\mathbf$
- $(3) \qquad {}_{1} \stackrel{\checkmark}{\checkmark_{1}} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_{1} {}_$

- (5)  $\frac{1}{2} \sum_{k \in \mathbb{N}^{n}} \sum_{k \in \mathbb{N}^{n}} \frac{1}{2} \sum_{k \in \mathbb{N}^{n}} \sum_{k \in \mathbb{N}^{n}}$
- $(6) \qquad \dots \qquad (\sqrt{2} + \sqrt{2} + \sqrt{2$

# Chapter 6 Share Certificates and Register of Shareholders

### Article 42

The Committee of the Co

 $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$ 

 $\frac{1}{\sqrt{|\mathbf{x}_{k}|^{2}}} \cdot \frac{\mathbf{k}_{k}}{\mathbf{k}_{k}} \cdot \frac{\mathbf{k}_{k}}{\sqrt{\mathbf{k}_{k}}} \cdot \frac{\mathbf{k}_{k}}{\mathbf{k}_{k}} \cdot \frac{\mathbf{k}_{k}}{\mathbf{k}_{k}}$ 

### Article 43

# Article 44

Company of the Compan

- $(1) \qquad \text{$\scriptstyle \lambda_{i} = \lambda$
- (2) I was a superior of the second of the se

- (5) I was a superior of the term of the superior of the superi
- (6) I was a suppose of the suppose o

# Article 45

 $\frac{1}{2^{n-1}} \cdot \lim_{x \to \infty} \frac{1}{2^{n-1}} \cdot$ 

### Article 46

William King a way of the control of

Later to the state of the same of the same

- $(1) \quad A \overset{\bullet}{\leftarrow}_{L_{X}} \overset{\bullet}{\sim}^{K_{L_{X}}} \overset{\bullet}{\sim} (2)_{\underline{A}} \overset{\bullet}{\sim} (3)_{\underline{A}} \overset{\bullet}{\sim}_{\underline{A}} \overset{\bullet}{\sim}_{\underline{A$
- $(2) \qquad (2) \qquad (3) \qquad (4) \qquad (4)$
- (3)  $\int_{-1}^{\infty} d_{x} d$

# Article 47

The same of the sa

- $(1) \quad A_{i,i} \in \mathcal{C}_{K_{i}}, \ \delta_{loc} \in$
- $(2) \qquad \text{, } \mathcal{L}_{X^{(1)}} \mathcal{L}_{X^{(2)}} \mathcal{L}_{X$
- $(3) \qquad \underset{\mathbf{X}}{\cdots} \qquad \qquad \underset{\mathbf{X}}{\cdots} \qquad \qquad \underset{\mathbf{X}}{\leftarrow} \qquad \qquad \qquad ;$
- (4) A Compared to the contraction of the contraction of the compared to the contraction of the contraction o
- $(5) \qquad \stackrel{\scriptstyle \leftarrow}{\mathcal{L}}_{i_1, \dots} \stackrel{\scriptstyle \leftarrow}{\mathcal{L}}_{i_{k_1, \dots}, \dots} \stackrel{\scriptstyle \leftarrow}{\mathcal{L}}_{i$
- (6) I will the the the transfer to the transfe

# Article 49

# Article 50

MAN TO THE RESERVE OF THE RESERVE OF

A. T. C. A. A. A. A. A. A. A. C. A. C. A. C. A. C. A. C. A. A. A. A. A. A. C. A. C.

### Article 52

A-JAAN COMMENT OF THE CONTROL OF THE

 $\frac{1}{2} \int_{\mathbb{R}^{N}} \frac{\mathbf{H}_{N}(\mathbf{x})}{\mathbf{h}(\mathbf{x})} \frac{\mathbf{H}_{N}(\mathbf{x})}{\mathbf{h}(\mathbf{x})} = \frac{1}{2} \int_{\mathbb{R}^{N}} \frac{\mathbf{H}_{N}(\mathbf{x})}{\mathbf{h}(\mathbf{x})} \frac{\mathbf{H}_{N}(\mathbf{x})}{\mathbf{$ 

- (2) The Company of the Art of the Control of the Co
- (3)  $\frac{1}{2} \left( \frac{1}{2} \left( \frac{1}$
- $(4) \qquad (6-1)_{[X',X',X',Y']} = (1)_{[X',X',X']} = (1)_{[X',X']} = (1)_{[X'$

The state of the s

- (6) ACT OF THE RESERVE OF THE CONTRACT OF THE
- $(7) \quad A_{||||} = (1, 1) \quad (6) \quad \chi_{1} = (1)\chi_{1} \times \dots \times (6) \quad (6) \quad \chi_{1} \times \chi_{2} \times \dots \times (6) \quad \chi_{1} \times \chi_{2} \times \dots \times (6) \quad \chi_{2} \times \chi_{2}$

# Article 54

 $\frac{1}{2} \left( \frac{1}{2} \left$ 

# Chapter 7 Rights and Obligations of Shareholders

### Article 55

 $\frac{1}{\sqrt{|a_{k}|^{2}}} \left( \frac{1}{\sqrt{|a_{k}|^{2}}} \frac{|a_{k}|^{2}}} \frac{1}{\sqrt{|a_{k}|^{2}}} \frac{1}{\sqrt{|a_{k}|^{2}}} \frac{1}{\sqrt{|a$ 

 $\frac{\partial \mathbf{z}^{\mathbf{G}}(\mathbf{z})}{\partial \mathbf{z}^{\mathbf{G}}(\mathbf{z})} = \frac{\partial \mathbf{z}^{\mathbf{G}}(\mathbf{z}$ 

The first of the second state of the second st

 $\frac{\partial \mathcal{L}_{\mathbf{w}} \mathcal{L}_{\mathbf{w}}$ 

# with the state of the state of the

- $(2) = \underbrace{C_{i,k}}_{i,k} \underbrace{C_{i,k}}_{i,k$

 $= \frac{1}{2} \frac$ 

# Article 56

 $H_{(1)} \sim \mathcal{C}_{(1)} \sim \mathcal{C}_{(2)} \times \mathcal{C}_{(1)} \sim \mathcal{C}_{(2)} \sim \mathcal{C}_{$ 

- (1) Contract of the first of the second with t
- (2) Color, and consequently of the color of
- $(3) \qquad \underset{|_{\mathbf{M}_{\mathbf{A}}} \sim 1}{\overset{\mathbf{K}}{\wedge}}, \underset{|_{\mathbf{M}_{\mathbf{A}}} \sim 1}{\overset{\mathbf{K}_{\mathbf{A}}}{\wedge}}, \underset{|_{\mathbf{M}_{\mathbf{A}}$
- $(4) \qquad (\underbrace{\mathbf{x}}_{1}, ..., \underbrace{\mathbf{x}}_{1}, ..., \underbrace{\mathbf$
- $(5) \qquad \qquad \underset{r \in [1, \infty]}{\underbrace{\mathbf{A}_{r_1, r_2, r_3}}} \underbrace{\mathbf{A}_{r_1, r_2, r_3}} \underbrace{\mathbf{A$ 
  - $1, \qquad , , , \downarrow_{\mathbf{X}^{(1)}} \sim \mathbf{A}_{\mathbf{X}^{(1)}} \sim \mathbf{A}_{\mathbf{X}^{(1)}$
  - $2. \qquad (_{\lambda}, \mathcal{L}_{(-\lambda)})^{*} = (_{\overline{\lambda}}, \dots, _{\overline{\lambda}})^{*} = (_{\overline{\lambda}}, \dots, _{\overline{\lambda}})^{*}$ 
    - $Q = \langle \neg_{Y}, \neg_{X} \rangle \neg_{X} \langle \neg_{X} \rangle \neg_{X} \rangle \neg_{X} \langle \neg_{X} \rangle \neg_{X} \langle \neg_{X} \rangle \neg_{X} \langle \neg_{X} \rangle \neg_{X} \langle \neg_{X} \rangle$

- THE MAKE AND CONTRACT MAKE THE PROPERTY.
- $(_{lll}) = \cdots, \underset{\mathbf{X}^{-1} \times \mathbb{C}}{\mathbf{X}^{-1} \times \mathbb{C}} = \cdots, \underset{\mathbf{W} \overset{\bullet}{\mathbf{X}} \times \mathbb{C}^{2} \times \mathbb{C}^{1}}{\mathbf{X}^{-1} \times \mathbb{C}^{1}} : \cdots, \underset{\mathbf{X} \overset{\bullet}{\mathbf{X}^{-1}} \overset{\bullet}{\mathbf{X}^{-1}} \overset{\bullet}{\mathbf{X}^{-1}}}{\mathbf{X}^{-1}} :$

- () I A COMPANY MAN CONTRACTOR WAS AN A COMPANY CONTRACTOR CONTRACT
- $\binom{n}{n} = \binom{n}{n} + \binom{n}$

- (7)  $= \sum_{k \in \mathbb{Z}_{+}} \left( \sum_{k \in \mathbb{Z}_{+}} \sum_{k \in \mathbb{Z}_{+}} \left( \sum_{k \in \mathbb{Z}_{+}} \sum_{k \in \mathbb$

AND THE RESERVE OF THE PARTY OF TH

### Article 57

The state of the s

The state of the s

# Article 59

The state of the s

 $\begin{cases} (1-i)^{2} \left( \frac{1}{2} \left( \frac{1}$ 

ANTERIOR OF THE STATE OF THE ST

# Article 60

### Article 61

 $H_{(1)}, \dots, (-\infty_{N}, \mathbb{Z}^{d_{k+1}}, \mathbb{Z}^{d_{k+1}}, \dots, (-\infty_{N}, \mathbb{Z}^{d_{k+1}}, \mathbb{Z}^{d_{k+1}}, \mathbb{Z}^{d_{k+1}}, \mathbb{Z}^{d_{k+1}}, \mathbb{Z}^{d_{k+1}}))$ 

- $(1) \qquad \underset{|\mathbf{M}_{\mathbf{A}}|^{2} = \lambda^{2} |\mathbf{X}|}{|\mathbf{X}|^{2}} ,_{\mathbf{X} |\mathbf{M}_{\mathbf{A}} \setminus \mathbf{X}} ,_{\mathbf{X} |\mathbf{M}_{\mathbf{A}} \setminus \mathbf{X}} ,_{\mathbf{X} |\mathbf{M}_{\mathbf{A}} \setminus \mathbf{X}} ,_{\mathbf{X} |\mathbf{X} |\mathbf{X} |$
- (2) In the external weather to be a way to be to be

- - $A_{\mathcal{A}_{\mathbf{z}}}(G_{\mathcal{A}_{\mathbf{z}}}) = C_{\mathcal{A}_{\mathbf{z}}}(G_{\mathcal{A}_{\mathbf{z}}}) + C_{\mathcal{A}_{\mathbf{z}}}(G_{\mathcal{A}_{\mathbf{z}}) + C_{\mathcal{A}_{\mathbf{z}}}(G_{\mathcal{A}_{\mathbf{z}}}) + C_{\mathcal{A}_{\mathbf{z}}}(G_{\mathcal{A}_{\mathbf{z}}) + C_{\mathcal{A}_{\mathbf{z}}}(G_{\mathcal{A}_{\mathbf{z}}}) + C_{\mathcal{A}_{\mathbf{z}}}(G_{\mathcal{A}_{\mathbf{z}}) + C_{\mathcal{A}_{\mathbf{z}}}(G_{\mathcal{A}_{\mathbf{z}}}) + C_{\mathcal{A}_{\mathbf{z}}}(G$
  - $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$

The first of the control of the cont

### Article 62

TO SECULAR SECTION OF A LATE OF SECTION OF A SECTION OF A

 $\frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1$ 

- $(1) = \bigoplus_{j \in \mathcal{I}_{N}} \mathcal{L}_{\mathbf{X}_{N}} \mathcal{L}_{\mathcal{I}_{N}} \mathcal{L}_$
- $(3) \quad A_{-\ell_{i_{1}}} \chi_{-\ell_{1}} f_{i_{1}} (\mathcal{C}_{i_{1}})_{-\ell_{1}} \mathcal{C}_{i_{1}} (\mathcal{C}_{i_{1}})_{-\ell_{1}} \mathcal{C}_{i_{2}} (\mathcal{C}_{i_{1}})_{-\ell_{1}} \mathcal{C}_{i_{2}} \mathcal{C}_{i_{1}} \mathcal{C}_{i_{1}} \mathcal{C}_{i_{1}} \mathcal{C}_{i_{1}} \mathcal{C}_{i_{2}} \mathcal{C}_{i_{1}} \mathcal{C}_{i_{2}} \mathcal{C}_{i_{1}} \mathcal{C}_{i_{2}} \mathcal{C}_{i_{1}} \mathcal{C}_{i_{2}} \mathcal{C}_{i_{1}} \mathcal{C}_{i_{2}} \mathcal{C}_{i_{2}} \mathcal{C}_{i_{1}} \mathcal{C}_{i_{2}} \mathcal{C}_{$

Make Complete the many of the many of the material of the material of the many of the many

- $(1) \quad \text{H.} ,_{\stackrel{\bullet}{\mathbf{A}} = 1}, \stackrel{\bullet}{\mathbf{A}}_{\stackrel{\bullet}{\mathbf{A}}}, \stackrel{\bullet}{\mathbf{A}}_{$
- (2)  $H_{\gamma_{\mathbf{A}}, \gamma_{\mathbf{A}}, \gamma_{\mathbf{A}$
- $(4) \quad \text{H.} \; ,_{\underline{\chi} = \chi_1 \times \chi_2 \times \chi_3 \times \chi_4 \times \chi_5 \times \chi_5$

# **Chapter 8** General Meeting

# 藍閣養母藜

- $(11)\quad A_{\underline{\mathsf{M}}^{'}},\quad {}^{\prime}{}_{\lambda}\quad A^{\prime''}_{\underline{\phantom{\mathsf{M}}}{}^{'}\underline{\phantom{\mathsf{M}}}},\quad A_{\ldots},\quad {}^{\underline{\mathsf{M}}}_{\underline{\phantom{\mathsf{M}}}},\quad ;$

- (14)  $\mathcal{L}_{X}$  X X  $\mathcal{L}_{X}$   $\mathcal{L}_{X$
- $(15) \quad \bigvee_{i=1}^{n} \bigvee_{i=1}^{$
- $(17) \stackrel{\text{C}}{\underset{|X|}{\longleftarrow}} \stackrel{\text{C}$

MATERIAL CALLES CONTRACTOR OF THE STATE OF T

- $(1) \quad A_{(1)} = A_{(2)} = A_{(3)} = A_{(3)}$
- $(2) \quad A_{1} = A_{1} = A_{2} = A_{3} = A_{3}$
- $(3) \qquad (3) \qquad (4) \qquad (4)$
- $(4) \quad A_{-1} \stackrel{\mathcal{I}}{\swarrow} \stackrel{\mathcal{I}{}} \stackrel{\mathcal{I}}{\swarrow} \stackrel{\mathcal{I}}{\swarrow} \stackrel{\mathcal{I}}{\swarrow} \stackrel{\mathcal{I}}{\swarrow} \stackrel{\mathcal{I}}{\swarrow} \stackrel{\mathcal{I}}{\swarrow} \stackrel{\mathcal{I}}{\swarrow} \stackrel{\mathcal{I}}{$
- $(5) \qquad (-\ell_{-\lambda} \wedge \mu_{\mathbf{X}})_{\mathbf{X}} (-\ell_{-\lambda} \wedge \mu_{\mathbf{X}})_{$
- $(6) \qquad \underset{k}{\text{$\sim \mathcal{L}_{1} \setminus \mathcal{L}_{1} \setminus \mathcal{L}_{2} \setminus \mathcal{L}_{1} \setminus \mathcal{L}_{2} \setminus \mathcal{L}_{1} \setminus \mathcal{L}_{2} \setminus \mathcal{L}$

 $= \frac{1}{2} \frac{$ 

### Article 67

THE RESERVE OF THE RE

THE REPORT OF THE PROPERTY OF

### Article 69

The state of the s

- $(1) \qquad \dots \qquad (1) \\ \qquad \qquad (2) \\ \qquad \qquad (3) \\ \qquad \qquad (4) \\ \qquad \qquad (4)$
- $(3) \qquad \underset{L_{1}}{\overset{\circ}{\sim}} \stackrel{\circ}{\sim} \underset{L_{1}}{\overset{\circ}{\sim}} \stackrel{\circ}{\sim} \underset{L_{1}}{\overset{\circ}{\sim}} \stackrel{\circ}{\sim} \underset{L_{1}}{\overset{\circ}{\sim}} \stackrel{\circ}{\sim} \underset{L_{2}}{\overset{\circ}{\sim}} \stackrel{\circ}{\sim} \underset{L_{1}}{\overset{\circ}{\sim}} \stackrel{\circ}{\sim} \stackrel{\circ}{\sim} \underset{$
- $(4) \qquad \text{i.e.} \quad \text{i.e.}$
- (5)  $(1 \times 1) \times (1 \times 1) \times$
- $(6) \qquad \underset{A \leftarrow \sum_{1 \leq i \leq n}}{\text{Act}} \sum_{1 \leq i \leq n} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + a_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + a_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + A_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + A_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + A_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + A_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + A_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + A_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + A_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i} + \cdots + A_{i}} \underbrace{A_{i} + \cdots + A_{i}}_{X_{i}$

### Article 70

The state of the s

# Section 2 Proposing and Convening of General Meeting

### Article 71

Control of the forest of the second of the following the following the second of the s

MINE LANGE OF THE SECOND OF TH

# Article 73

 $\frac{1}{2} \int_{\mathbb{R}^{n}} \left( \int_{\mathbb$ 

- $(1) = \underbrace{\sum_{i \in \mathcal{A}_i \in \mathcal{A}_i \in \mathcal{A}_i \in \mathcal{A}_i \in \mathcal{A}_i}_{\mathcal{A}_i \in \mathcal{A}_i \in \mathcal{A}$
- (2)  $\sum_{k=1}^{\infty} \frac{1}{k} \sum_{k=1}^{\infty} \frac{1}{k}$

- (5)  $\frac{1}{|\mathcal{A}|} \frac{1}{|\mathcal{A}|} \frac{1}{|\mathcal{A}|$

### Section 3 Proposals and Notices of General Meeting

# Article 75

### Article 76

 $\frac{2}{2} \sum_{k=1}^{N} \frac{1}{2} \left[ \frac{1}{2} \sum_{k=1}^{N} \frac{1}{2} \sum_{k=$ 

 $\frac{1}{2} \left( \frac{1}{2} \left$ 

The control of the second of t

### Article 77

CONTRACT THE CONTRACT WAS A CONTRACT OF THE WAS A CONTRACT OF THE

- $(1) \qquad \qquad \underset{1 \to \infty}{\longleftarrow} \qquad \underset{1 \to \infty}{\longleftarrow} \qquad \underset{1 \to \infty}{\longleftarrow} \qquad ;$
- The state of the s
- A CALL TO A COMMENT OF A COMMENT AND A COMME (3)
- and the second to the first of the first of the second (4)
- $= \frac{1}{2} \left( \frac{1}{2}$
- (6)
- The state of the s (7)
- All A man almi A man and a man
- CALL A CONTAIN A CONTRACT OF MARKET OF CONTRACT OF CONTRACT OF CONTRACT AND CONTRAC

### Article 79

A COMMONDA CALL MENT OF THE ME

- $(1) = \frac{1}{2} \sum_{i=1}^{k} \frac{1}{2} \sum_{i=1}^{k$
- A CHICA CONTRACTOR OF THE STATE (2)

- $(4) \qquad \text{if } \mathcal{L}_{X_{i}} \cup \mathcal{L}_{$
- $(5) \qquad \mathcal{A}_{X} \circ \mathcal{C}_{\underline{\mathsf{M}}_{\underline{\mathsf{A}}}, X_{1} \circ \mathbb{A}} \circ \mathcal{C}_{X_{1} \circ \mathbb{A}} \circ \mathcal{C}_{\underline{\mathsf{A}}} \circ \mathcal{C}_{\underline{\mathsf{A}}} \circ \mathcal{C}_{\underline{\mathsf{A}}} \circ \mathcal{C}_{X_{1} \circ \mathbb{A}} \circ$

# Article 80

### Article 81

# Article 82

CALL AND A COMPANY OF A CONTRACT TO MAKE A CONTRACT TO A CONTRACT A CONTRACT

# Section 4 Convening General Meeting

### Article 83

I roll of the material and the real of the contract of the con

- (2)  $(N_{1}, N_{2}, N_{3}, N_{4}, N_$
- $(3) \quad \prod_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N} \\ k \in \mathbb{N}}} \left( \sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N} \\ k \in \mathbb{N}}} \left( \sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N} \\ k \in \mathbb{N}}} \left( \sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N} \\ k \in \mathbb{N}}} \left( \sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N} \\ k \in \mathbb{N}}} \left( \sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N} \\ k \in \mathbb{N}}} \left( \sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N} \\ k \in \mathbb{N}}} \left( \sum_{\substack{k \in \mathbb{N}}} \left( \sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N}}} \left( \sum_{\substack{k \in \mathbb{N}}} \left( \sum_{$

# Article 84

 $\frac{1}{2} \frac{\partial_{\mu} f_{\mu}}{\partial x_{\mu}} \frac{\partial_{\mu} f_{\mu}}{\partial x_{$ 

# Article 85

 $\frac{\partial^2 u}{\partial t} = \frac{\partial^2 u}{\partial$ 

 $\frac{\partial \mathcal{L}_{X}}{\partial x} = \frac{\partial \mathcal{L}_{X}}{\partial x} + \frac{\partial \mathcal{L$ 

- (1) / Im . . . . ;
- (3) AND THE RESERVE AND THE RESERVE AS THE RESERVE
- $(4) \qquad {}_{\mathbf{X}^{(1)} \times {}_{\mathbf{A}^{(1)} \times {}_{\mathbf{A}^{(1)}$
- $(5) = \frac{1}{4\pi} \left( \mathcal{L}_{(X_{\mathbf{A}})} \right), \quad \mathcal{L}_{(X_{\mathbf{A}})} \left( \mathcal{L}_{(X_{\mathbf{A})}} \right), \quad \mathcal{L}_{(X_{\mathbf{A}})} \left( \mathcal{L}_{(X_{\mathbf{A})}} \right), \quad \mathcal{L}_{(X_{\mathbf{A})}} \left( \mathcal$
- (6) - A CALL OF A WAR CONTRACTOR OF THE CALL OF THE
- $(7) = \lim_{M \to \infty} C_{i,j} \sum_{X_{i,j} \in \mathcal{X}_{i,j}} C_{i,j} C_{i,j} \sum_{X_{i,j} \in \mathcal{X}_{i,j}} C_{i,j} \sum_{X_{i,j} \in \mathcal{X}_{i,j}} C_{i,j} \sum_{X_{i,j} \in \mathcal{X}_{i,j}} C_{i,j} \sum_{X_{i,j} \in \mathcal{X}_{i,j}} C_{i,j} C_{i$

 $\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}$ 

 $\frac{1}{2} \int_{\mathbb{R}^{N}} \frac{1}{2} \int_{\mathbb{R}^{N}} \frac{1}{2}$ 

### Article 87

The state of the second second

### Article 88

The service of the se

### Article 89

### Article 90

The second of th

### Article 92

 $= \frac{1}{2} \frac{2^{n} \left( \frac{1}{2} \left($ 

 $= \frac{1}{2} \frac{$ 

CARCAL DOCUMENTARY CONTRACTOR OF THE CONTRACTOR

### Article 93

# Article 94

TO THE RESIDENCE WE ARE A STATE OF THE STATE

Charles of the Control of the Contro

### Article 96

# Article 97

 $\frac{\partial \mathcal{L}_{\mathcal{A}}(\mathcal{L}_{\mathbf{A}}) \log \mathcal{L}_{\mathcal{A}}(\mathcal{L}_{\mathbf{A}})}{\partial \mathcal{L}_{\mathcal{A}}(\mathcal{L}_{\mathbf{A}}) \log \mathcal{L}_{\mathcal{A}}(\mathcal{L}_{\mathbf{A}})} = \frac{\partial \mathcal{L}_{\mathcal{A}}(\mathcal{L}_{\mathbf{A}})}{\partial \mathcal{L}_{\mathbf{A}}(\mathcal{L}_{\mathbf{A}})} = \frac{\partial \mathcal{L}_{\mathbf{A}}(\mathcal{L}_{\mathbf{A}})}{\partial \mathcal{L}_{\mathbf{A}}(\mathcal{L}_{\mathbf{A}})} = \frac{\partial \mathcal{L}_{$ 

- $(1) \qquad \qquad \underset{\mathsf{lim}'}{\mathsf{lim}'}, \; \underset{\mathsf{A}'}{\mathsf{lim}'}, \; \underset{\mathsf{A}'}{\mathsf{lim}'} \; \underset{\mathsf{A}'}{\mathsf{l$
- (2) Indian loss of loss of the loss of the

- $(5) \qquad {}_{\mathbf{X}}(\mathcal{C}_{\mathcal{C}_{\mathbf{X}}}) \stackrel{\mathcal{C}_{\mathbf{X}}}{\leftarrow} (\mathcal{C}_{\mathbf{X}}) \stackrel{\mathcal{C}_{\mathbf{X}}}{\leftarrow} (\mathcal{C}_$
- (6) A Limit of a local to the state of the s
- $(7) \qquad \text{if } (, \langle \cdot, \cdot, \cdot, \cdot, \cdot \rangle_{V_{1}}) = \sum_{k \in \mathcal{K}_{1} \cap \mathcal{K}_{2}} \mathbf{A}_{(k)} + \sum_{k \in \mathcal{K}_{1} \cap \mathcal{K}_{2}} \mathbf{A}_{(k)} + \sum_{k \in \mathcal{K}_{1} \cap \mathcal{K}_{2}} \mathbf{A}_{(k)} + \sum_{k \in \mathcal{K}_{2} \cap \mathcal{K}_{2}} \mathbf{A}_{(k)} + \sum_{k \in \mathcal{K}_{2}} \mathbf{$

### Article 98

# Article 99

### Section 5 Voting and Resolutions at General Meetings

### Article 100

Complement of the Control of the Con

Control of the process of the control of the contro

 $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1$ 

### Article 101

The state of the s

A STERNING TO THE STATE OF THE

 $\frac{1}{2} \frac{1}{2} \frac{1$ 

# Article 102

CANA COMMENTALLIS CONTRACTOR

### Article 103

# Article 104

 $= \frac{2}{2} \left( \frac{1}{2} \left( \frac{1}{2}$ 

## Article 106

A. (7), (8), (9), (11), (13), (15), A., (63), (14), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (15), (1

#### Article 107

 $\frac{1}{2} \frac{1}{2} \frac{1}$ 

# Article 108

The state of the s

#### Article 109

### Article 110

The state of the s

# Chapter 9 Special Procedures for Voting at Class Meeting

## **Article 111**

The state of the s

 $\frac{1}{4} \sum_{k=1}^{n} \frac{1}{2} \sum_{k=1}^{n} \frac{1}$ 

A STATE OF THE STATE OF THE RESERVE OF THE STATE OF THE S

The first of the first of the second of the first of the

 $\frac{1}{2\pi} \frac{1}{2\pi} \frac$ 

#### Article 112

## Article 113

TO SERVICE STATE OF THE SERVICE OF THE SERVICE STATE OF THE SERVICE STAT

- 1. The Control of the second with the second of the Control of the Control of the second of the seco
- $\frac{2^{n}}{2^{n}} = \frac{1}{2^{n}} \frac{1}{2^{n}$
- 3.  $\frac{1}{\mathbf{A}} C_{\mathbf{M}_{\mathbf{k}}^{(i)}, \mathbf{A}_{\mathbf{k}}^{(i)}} (C_{\mathbf{k}}^{(i)}) + C_{\mathbf{k}}^{(i)} C_{\mathbf{k}}^{(i)} + C_{\mathbf{k}}^{(i)} C_$
- 4. \(\frac{1}{2}\tilde{\alpha}\) \(\frac{1}\tilde{\alpha}\) \(\frac{1}{2}\tilde{\alpha}\) \(\fra

- 6.  $\mathbf{A}^{C}_{\mathbf{M}^{C}} \mathbf{A}^{C}_{\mathbf{M}^{C}} \mathbf$
- 7. A Comment of the control of the second of
- $8. \quad \underset{\mathbf{X}^{(1)} \in \mathbb{N}}{\mathbf{X}^{(1)} = \mathbf{X}^{(1)} = \mathbf{X$
- 9. The state of th
- $10. \quad \underset{\mathbf{X}^{(i)}, \mathbf{Y}}{\mathbf{X}^{(i)}} \stackrel{\mathcal{C}}{\leftarrow} \underset{\mathbf{X}^{(i)}}{\mathbf{X}^{(i)}} \stackrel{\mathcal{C}}{\sim} \stackrel{\mathcal{C}}{\sim} \underset{\mathbf{X}^{(i)}}{\mathbf{X}^{(i)}} \stackrel{\mathcal{C}}{\sim} \underset{\mathbf{X}^{(i)}}{\mathbf{X}^{(i)}} \stackrel{\mathcal{C}}{\sim} \underset{\mathbf{X}^{(i)}}{\mathbf{X}^{(i)}} \stackrel{\mathcal{C}}{\sim} \underset{\mathbf{X}^{(i)}}{\mathbf{X}^{(i)}} \stackrel{\mathcal{C}}{\sim} \underset{\mathbf{X}^{(i)}}{\mathbf{X}^{(i)}} \stackrel{\mathcal{C}}{\sim} \underset{\mathbf{X}^{(i)}}{\mathbf{X}^{(i)}} \stackrel{\mathcal{C}}{\sim} \underset{\mathbf{X}^{(i)}}{\mathbf{X}^{(i)$
- $11. \quad \mathcal{C}_{i} \stackrel{\leftarrow}{\mathcal{M}} \quad \mathcal{C}_{j} \stackrel{\leftarrow}{\mathcal{L}}_{i} \stackrel{\leftarrow}{\mathcal{L}_{i}} \stackrel{\leftarrow}{\mathcal{L}}_{i} \stackrel{\leftarrow}{\mathcal{L}}_{$

 $\frac{1}{2} \left( \frac{1}{2} \left$ 

 $\frac{1}{2} \left( \frac{1}{2} \left$ 

## Article 117

Control of the wind of the control o

## Article 118

A REAL STATE OF THE STATE OF TH

A CONTRACTOR OF CONTRACTOR OF

- $(1) \qquad \mathcal{L}_{1} \qquad \mathcal{L}_{1} \qquad \mathcal{L}_{1} \qquad \mathcal{L}_{2} \qquad \mathcal{L}_{3} \qquad \mathcal{L$
- (2)  $\frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{$
- $(3) \qquad (6) \qquad (7) \qquad (7) \qquad (7) \qquad (7) \qquad (8) \qquad (8)$

# **Chapter 10** Party Committee

## Article 119

| Lead and | Lead and

Indian Control of the Control of the

## Article 120

A CONTRACTOR OF THE ACT AND A CASE OF A CONTRACTOR OF THE ACT AND ACT

- $(1) \qquad \qquad (1) \qquad (1$
- 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1

- $(c) = \lim_{k \to 1^+} \left( -1 \lim_{k \to \infty} \frac{1}{k} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k} \cap \mathcal{V}_{i}} \mathcal{A}_{i,i-1}^{(i)} \right) \right) = \lim_{k \to 1^+} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k} \cap \mathcal{V}_{i}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to 1^+} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k} \cap \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to 1^+} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1}{k} \sum_{i \in \mathcal{V}_{k}} \mathcal{A}_{i,i-1}^{(i)} \right) = \lim_{k \to \infty} \left( -\frac{1$

The transfer to the part of the transfer to th

## Article 126

To the transport of the

#### Article 127

A for Charles and the form of the control of the co

The Confidence of the Confiden

# Article 128

A CHARLES TO THE STATE OF THE S

### Article 130

# **Section 2** Independent Directors

## Article 131

The state of the s

#### Article 132

 $A_{-1/\underline{A}^{(1)},-1,1/2} = A_{-1/2} = A_{-$ 

## Article 133

A some of the second of the se

# Article 134

 $\frac{d^2}{dt} = \lim_{n \to \infty} \frac{d^2}{dt} = \frac{d^2}$ 

The state of the s

## Section 3 Board of Directors

#### Article 136

A CHARLES AND THE ACTUAL OF THE STATE OF THE

## Article 137

The second of th

#### Article 138

was the was the second of the second

- (1) Colored Co
- (2) Along The Configuration of the Configuration in the Configuration in
- $(4) \qquad (4) \qquad (4)$
- (5)  $(\mathcal{L}_{\mathbf{M}} | \mathbf{x}^{-1}) = (\mathbf{M}_{\mathbf{X}} | \mathbf{x}^{-1} \mathbf{x}^{-1}) = (\mathbf{x}^{-1} + \mathbf{x}^{-1}) = (\mathbf{x}^{-1} + \mathbf{x}^{-1} \mathbf{x}^{-1}) = (\mathbf{x}^{-1} + \mathbf{x}^{-1}) = (\mathbf{x}^{-1} + \mathbf{x}^{-1}) = (\mathbf{x}^{-1} + \mathbf{x}^{-1}) = (\mathbf{x}^$
- (6)  $(K_{\mathbf{A}}, K_{\mathbf{A}}, K_{\mathbf{A}},$
- (7) Colling Co
- (8)  $(\mathcal{L}_{\mathbf{M}})_{\mathbf{K}} \sim (\mathcal{L}_{\mathbf{M}})_{\mathbf{K}} \sim (\mathcal{L}_{\mathbf{M}})_{\mathbf{M}} \sim (\mathcal{L}_{\mathbf{M}})_{\mathbf$

- (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (1
- (12) The state of the state of
- $(14) \quad \langle \quad \langle \stackrel{\leftarrow}{}_{lad} \mid_{\mathbf{X}} \quad \stackrel{\leftarrow}{}_{-} \stackrel{\leftarrow}{}_{-} \quad \langle \stackrel{\leftarrow}{}_{\mathbf{X}} \mid_{1} \quad \langle \quad X \mid_{\mathbf{X}} \quad \rangle \quad \langle \quad X \mid_{1} \quad \langle \quad X$
- $(15) \quad \langle \mathcal{L}_{\mathbf{M}} |_{\mathbf{K}}, \dots, \mathbf{k}, \dots, \mathbf{k$
- (16) (IMINATE OF THE TOTAL OF T
- $(17) = \left( \frac{1}{12} \left( \frac{1}{1$

- And the Company of the second of the second
- $\frac{1}{2} \frac{1}{2} \frac{1}$
- Construction of the contract o
- A TOTAL MINE SECTION OF THE STATE OF THE SECTION OF
- 1. The state of th

 $= \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right)$ 

# Article 139

 $\frac{1}{2} \frac{1}{2} \frac{1}$ 

#### Article 140

The Control of the Co

A to the local test of the loc

The state of the s

The transfer of the property of the second o

The Allege of Control of the Control

## Article 142

The same of the sa

- $(1) = \langle -C_{i_1} \rangle \cdot \langle -C_{i_2} \rangle \cdot \langle -C_{i_1} \rangle \cdot \langle -C_{i_2} \rangle$
- $(2) \qquad (-\ell, 1) \stackrel{\leftarrow}{\mathcal{L}}_{\lambda} \qquad (k) \stackrel{\wedge}{\mathcal{L}}_{\lambda} \stackrel{\wedge}{\mathcal{L}_{\lambda}} \stackrel{\wedge}{\mathcal{L}}_{\lambda} \stackrel{\wedge}{\mathcal{L}_{\lambda}} \stackrel{\wedge}{\mathcal{L}}_{\lambda} \stackrel{\wedge}{\mathcal{L}}_{\lambda} \stackrel{\wedge}{\mathcal{L}}_{\lambda} \stackrel{\wedge}{\mathcal{L}}_{\lambda}$
- (3) Continue of Maximum of Maximu
- $(4) = \langle \mathcal{C}_{\underline{\mathbf{X}}}, \sqrt{r}, r, \langle \mathcal{C}_{\underline{\mathbf{M}}} \rangle_{\underline{\mathbf{X}}, \mathbf{Y}}, \cdots, \langle \mathcal{C}_{\underline{\mathbf{Y}}} \rangle_{\underline{\mathbf{X}}}, \cdots, \langle \mathcal{C}_{\underline{\mathbf{Y}}} \rangle_{\underline{\mathbf{X}}}, \cdots, \langle \mathcal{C}_{\underline{\mathbf{X}}} \rangle_{\underline{\mathbf{X$
- (5) LINE TO SERVICE THANK OF THE PARTY OF THE TOTAL PROPERTY OF TH
- (6)  $(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_$
- (8) The confidence of the state of the state
- (9) WANTER COMMENCE OF AN COLUMN THE WAS CALLED TO SERVICE OF THE WAS CALL
- (10)  $(10) = (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1 1)^{-1} (1$

The second secon

# Article 144

CONTROL MAN AND A STATE OF A LANGE AND A STATE OF A STA

Many Control of the C

# Article 145

The Actual Control of March All Control of Control of March Actual Actua

The state of the s

## Article 146

- (2) **1**, ..., ..., ..., ..., ...;
- $(3) \quad (^{I})_{X_{1} \times X_{1} \times X_{2} \times X_{3}};$
- $(4) \qquad {}_{\mathbf{A}}, \quad {}_{\mathbf{A}},$

The state of the s

# Article 148

A. Cherry Charles of the second of the secon

### Article 149

The state of the s

## Article 150

## **Article 151**

CONTRACTOR AND A POST AND A STATE OF THE CONTRACTOR AND A STATE OF

The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th

 $\frac{1}{2} \left( \frac{1}{2} \left$ 

The state of the s

 $= \lim_{k \to \infty} \frac{k}{k} + \lim$ 

## Article 153

Complex of the contract of the second

- (2)  $\lim_{X \to X} \left( \int_{X} \int_{X}$
- (3)  $\lambda_{\mathbf{X}^{L_{1}},\mathbf{X}^{L_{2}}};$

#### Article 154

# **Chapter 12** Secretary to the Board of Directors

## Article 155

 $\frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2$ 

#### Article 156

 $\frac{(1+i)^{k} \left( \left( \frac{1}{2} \left( \frac{$ 

- re-Chon Color Contrator of the Color of the Color of the party of the color of the
- (1)  $\sum_{i \in \mathcal{I}_{i}} \mathcal{I}_{i} \left( \frac{\partial^{k} \mathcal{I}_{i} \mathcal{I}_{i}}{\partial \mathcal{I}_{i}} \right) = \mathcal{I}_{i} \left( \frac{\partial^{k} \mathcal{I}_{i} \mathcal{I}_{i}}{\partial \mathcal{I}_{i}} \right) = \mathcal{I}_{i} \left( \frac{\partial^{k} \mathcal{I}_{i} \mathcal{I}_{i}}{\partial \mathcal{I}_{i}} \right) = \mathcal{I}_{i} \left( \frac{\partial^{k} \mathcal{$
- $(2) = (\mathcal{L}_{\mathbf{X}^{(1)}}^{\mathbf{X}^{(1)}} \cdot \mathbf{L}_{\mathbf{X}^{(1)}}^{\mathbf{X}^{(1)}} \cdot \mathbf{L}_{\mathbf{X}^{(1)}}^{\mathbf{X}^$
- $(3) \qquad (5) \qquad (5)$
- (4) This will be to the state of the state
- $(5) \qquad \qquad |\underline{\mathbf{x}}_{\mathbf{k}}|^{2} = \sum_{\mathbf{k}} \sum_{\mathbf{k$
- was the Company of the Conference of the Confere
- $(1) \quad (I_{1}, 1) \quad (I_{1}, I_{1}, \dots, I_{1}, I_{1},$
- $(2) = (-1)^{k} \left( \frac{1}{2} \left( \frac{$

- (5) Control of the second of t

- (6) Challed Control of the control o
- $(8) \quad \underset{k}{\underset{k}{\underset{k}{\overset{\sim}{\longrightarrow}}}} \quad (6) \quad \underset{k}{\underset{k}{\overset{\sim}{\longrightarrow}}} \quad (6) \quad \underset{k}{\overset{\sim}{\longrightarrow}} \quad (6) \quad \underset{k}{\overset{\sim}{\longrightarrow}}$
- (9) China Color China Ch
- $(10) = \mathcal{C}(\zeta_{\underline{\mathbf{M}}}, \mathbf{1}, \mathbf{1$

The Control of the Control of the Control of Control of the Contro

#### Article 158

 $\frac{\partial f_{1}}{\partial x_{1}} = \frac{\partial f_{2}}{\partial x_{2}} = \frac{\partial f_{1}}{\partial x_{2}} = \frac{\partial f_{2}}{\partial x_{1}} = \frac{\partial f_{2}}{\partial x_{2}} = \frac{\partial f_{2}}{\partial x_{2}}$ 

# **Chapter 13 General Manager**

# Article 159

TO THE ATT AND A TOWARD CONTRACT OF THE ATT OF THE ATT

TO SECURITA SOUTH SELECTION OF THE SECOND SECURITIES AND ASSESSED AS A SECOND S

The state of the s

The state of the s

A So Sugar College kerner College has all the same

## Article 161

TO SECTION OF THE SECTION OF SECT

- $(1) = \frac{1}{|\mathbf{X}|} = \frac{1}{|\mathbf{X}|}$
- (2)  $\mathcal{L}_{\mathbf{r}_{i}}$   $\mathcal{L}_{i}$   $\mathcal{L}_{i}$
- (3) WANTER AND COMMENT OF THE ACT OF THE ACT
- (5) \(\frac{1}{4} \) \(\frac{1}{4} \) \(\lambda \) \(\frac{1}{4} \) \(\lambda \) \(\frac{1}{4} \) \(\frac{1}
- (6)  $\mathcal{L}_{\mathbf{M},\mathbf{K}}^{\mathbf{I}}$ ,  $\mathcal{L}_{\mathbf{A}}^{\mathbf{I}}$ ,  $\mathcal{L}_{\mathbf{A}}$
- $(7) \quad -\ell_{-1} \cdots \gamma_{\mathbf{A}^{-1} + 1} \cdots \gamma_{\mathbf{M}^{-1} + 1} \cdots \gamma_{\mathbf{M}^$

- $(10) \quad \text{i.e.} \quad A_{i_1,i_2} \quad A_{i_1,i_2} \quad A_{i_1,i_2} \quad A_{i_1,i_2} \quad A_{i_1,i_2} \quad A_{i_1,i_2} \quad A_{i_2,i_3} \quad A_{i_1,i_2} \quad A_{i_1,i_2} \quad A_{i_2,i_3} \quad A_{i_1,i_2} \quad A_{i_2,i_3} \quad A_{i_1,i_2} \quad A_{i_1,i_2} \quad A_{i_2,i_3} \quad A_{i_1,i_2} \quad A_{i_2,i_3} \quad A_{i_1,i_2} \quad A_{i_1,i_2}$

Note that the second of the se

# Article 162

THE RESERVE OF THE STATE OF THE

MANAGERINA AND COMMENT OF THE STATE OF THE S

in the the control was the property

- (1) Compared to the second of the second of
- (2) Comment of the second seco
- (4) when the way to a sufference of the the

#### Article 164

A A CAN A CAME A MANAGE COME TO MANAGE COME TO COME AND A CAME AND

# **Chapter 14 General Counsel**

#### Article 165

 $\frac{1}{1} \left( \frac{1}{2} \left$ 

THE REPORT OF THE RESERVE THE SECOND STREET OF THE RESERVE THE RES

## Article 166

# **Chapter 15 Board of Supervisors**

# Section 1 Supervisors

#### Article 167

and the contract of the contra

#### Article 168

A So Compared and the second of the second o

#### Article 169

# Article 170

All of real of the real of the

#### Article 171

#### Article 172

## Article 173

 $\frac{A_{1}}{A_{1}} = \frac{A_{1}}{A_{1}} \frac{A_{1}}{A_{1}} \frac{A_{2}}{A_{1}} \frac{A_{1}}{A_{2}} \frac{A_{2}}{A_{1}} \frac{A_{2}}{A_{2}} \frac{A_{2}}{A$ 

#### Section 2 Board of supervisors

#### Article 174

 $\frac{1}{\left(\frac{1}{1} - \frac{1}{1} + \frac{1}{1$ 

#### Article 176

 $\frac{1}{1} \left( \frac{1}{2} \left$ 

## Article 177

- 2. A TO THE MENT OF THE TOTAL PROPERTY OF THE TAXABLE PROPERTY OF THE PARTY OF THE
- 3. The state of th
- 4. The was say in the way in the way say the the selection the the and the way the weather the same of the way the way the same of the way the way
- 5.  $= \underbrace{C_{-1,1} \cdot \cdots \cdot C_{-1,1} \cdot$
- 6. I was for wall with a dis
- 7. Commence of the form of the contract of the
- 8. Ith Colon Atan Caraca Marketine was the contraction of the contract
- 9. Complete the second of the
- 10. The second of the second o

 $\frac{1}{4} \left( \frac{1}{16} \left( \frac{1}{$ 

 $\frac{1-(K_1 + K_2)}{(K_1 + K_2)} = \frac{1-(K_1 + K_2 + K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2)}{(K_1 + K_2 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2 + K_2)}{(K_1 + K_2 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2 + K_2)}{(K_1 + K_2 + K_2 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2 + K_2 + K_2)}{(K_1 + K_2 + K_2 + K_2 + K_2 + K_2)} = \frac{1-(K_1 + K_2 + K_2 + K_2 + K_2 + K_2 + K_2 + K_2)}{(K_1 + K_1 + K_2 + K_2$ 

## Article 179

## Article 180

And with the transfer of the contraction of the con

### Article 181

# Article 182

- $(1) \qquad \qquad \swarrow, \quad , , \downarrow, \quad \cup \swarrow_{\stackrel{\bullet}{\mathbf{A}}^{(1)}}, \quad \vee \quad \downarrow_{\stackrel{\bullet}{\mathbf{M}}^{(1)}} Z;$
- $(2) \quad \mathscr{C}_{\mathbf{A}^{(1)} \times \mathbf{A}^{(1)} \mathbf{A}^{(1)}} \mapsto (1, \dots, 1, \dots,$
- $(3) \qquad \mathbf{A} \stackrel{\cdot}{\smile} \mathbf{A} \stackrel{\cdot}{\smile} \mathbf{A} \stackrel{\cdot}{\smile} \stackrel{\cdot}{\smile} \mathbf{A} \stackrel{\cdot}{\smile} \cdots \stackrel{\cdot}{\smile} \cdots \stackrel{\cdot}{\smile} \mathbf{A} \stackrel{\cdot}{\smile} \cdots \stackrel{\cdot}{\smile}$

 $\frac{\mathcal{A}_{1}\mathcal{A}_{2}}{\mathcal{A}_{1}\mathcal{A}_{2}} = \frac{\mathcal{A}_{1}\mathcal{A}_{2}}{\mathcal{A}_{1}\mathcal{A}_{2}} = \frac{\mathcal{A}_{2}\mathcal{A}_{2}\mathcal{A}_{3}\mathcal{A}_{3}\mathcal{A}_{4}\mathcal{A}_{3}\mathcal{A}_{3}\mathcal{A}_{4}\mathcal{A}_{3}\mathcal{A}_{3}\mathcal{A}_{4}\mathcal{A}_{4}\mathcal{A}_{4}\mathcal{A}_{4}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{A}_{5}\mathcal{$ 

## Article 184

 $\frac{1}{2} \frac{\left( \int_{\mathbb{R}^{N}} \left( \int_{\mathbb{R}^{N}} \left$ 

# Chapter 16 Qualifications and Obligations of the Company's Directors, Supervisors and Other Senior Management

#### Article 185

- $1, \quad \chi_{-1}(\mathcal{C}_{i,1}) = \chi_{-1}(1) = \chi_$
- 2. Indiana I and and in the state of the sta

- 5. The state of th
- 6. Zerter of the transfer of the property of t
- 7. Jacker Markeyer and Marington and Jacker Marington
- 8.  $\sum_{k=0}^{\infty} \int_{\mathbb{R}^{N}} \left( \frac{1}{N} \int_{\mathbb{R}^{N}} \int_$

- $10. \quad (\mathcal{A} \subseteq \mathcal{A} \subseteq$

TAIL TO A A TO A CONTROL OF THE TOTAL TO THE A TOTAL A

## Article 187

- 2. I sure for some of the contractions

# Article 188

 $\frac{1}{2} \left( \frac{1}{2} \left$ 

#### Article 189

 $\frac{1}{1+\frac{1}{2}}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2$ 

- 1.  $(\mathbf{x}_{\mathbf{x}}, \mathbf{x}_{\mathbf{x}}, \mathbf{x}_{\mathbf{x}},$
- $2. \quad \text{ or } \mathcal{L}_{\mathcal{X}^{(1)}}, \quad \mathcal{L}_{\mathcal{X}^{(1)$
- 3. Continue of the transfer of

- 4. Constant of the many of all and the second of the secon
- 5. Charles Art 1 And 1 A
- 6. (1, 1, 2) (1, 2) (1, 2) (1, 2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
- 7.  $(C_{1} C_{2} C_{3} C_{3} C_{3} C_{4} C_{5} -$
- 8. Commence of the state of the
- 9. And Andrew Andrew Andrew Company of the Antrew Company of
- $11. \quad \dots \quad \lim_{M \to \infty} \frac{1}{2^{m}} \left( \frac{1}{2^{m}} \frac{1}{$
- $12. \quad \dots \quad \times_{N-N+1} \quad \dots \quad \times_$
- 13. Comment of the second of t
- 14. Compared to the form of the property of th
  - $(1) \quad \mathcal{L}_{1} \quad \dots \quad \mathbf{k} \quad ;$
  - $(2) = C_{\bullet} \Gamma_{\Lambda} C_{\bullet \Lambda} \quad \text{a. i. } \Gamma_{\Lambda} \Gamma_{\bullet \Lambda} \quad \text{a. i. } \Gamma_{\Lambda} \Gamma_{\Lambda} \Gamma_{\bullet} \Gamma_{\bullet}$
  - (3)  $C_{\bullet} \Gamma_{\bullet} C_{\bullet} \Gamma_{\bullet} \Gamma_{\bullet} \Gamma_{\bullet} C_{\bullet} \Gamma_{\bullet} \Gamma_{\bullet} C_{\bullet} \Gamma_{\bullet} \Gamma_{\bullet}$

The section of the se

 $\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$ 

- $2. \qquad \text{if } C_{i_1} = C_{i_2} + C_{i_3} + C_{i_4} + C_{i_5} + C_$
- $4. \qquad \underset{\mathbf{X}}{\text{local }} \underbrace{\mathbf{X}}_{\mathbf{X}} \underbrace{\mathbf{X}}_{\mathbf$

# Article 191

The state of the s

# Article 192

### Article 193

TO THE RESIDENCE OF THE SECOND OF THE SECOND

SWEATHER TO THE POST OF THE WAS A WILLIAM TO THE RESERVENCE OF THE PROPERTY OF

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

A Contract C

## Article 194

# Article 195

The Company of the Control of the Co

# Article 196

A CONTRACTOR OF THE STATE OF TH

- 1. The state of th
- 3.  $\frac{1}{1000} \frac{1}{1000} \frac{1}{$

#### Article 197

A PARTON PARTON

- 1. The second of the second of
- $2. \qquad \text{if } ||\mathbf{x}|| \leq \sum_{i=1}^{n} ||\mathbf{x}||^{2} \leq \sum_{i=1}^{n} ||\mathbf{x}||^{2$

## Article 199

## Article 200

CALLES AND CALLES COM TO COME TO COME AND A MAN A MAN A TO COME AND COME AN

- 1. The start of the the start of the start o
- 3. The state of th
- 4. Company of the second of th
- 5. The state of th
- $6. \qquad \frac{k}{2} \left[ \frac{1}{\sqrt{k}} \left[ \frac{1}{\sqrt{k}} \left( \frac{1}{\sqrt{k}} \right) + \frac{1}{\sqrt{k}} \left( \frac{1}{\sqrt{k}} \left( \frac{1}{\sqrt{k}} \right) + \frac{1}{\sqrt{k}} \left( \frac{1}{\sqrt{k}} \left( \frac{1}{\sqrt{k}} \right) + \frac{1}{\sqrt{k}} \left( \frac{1}{\sqrt{k}} \right) + \frac{1}{\sqrt{k}} \left( \frac{1}{\sqrt{k}} \left( \frac{1}{\sqrt{k}} \right) + \frac{1}{\sqrt{k}} \left( \frac{1}{\sqrt{k}} \right) + \frac{1}{\sqrt{k}} \left( \frac{1}{\sqrt{k}} \left( \frac{1}{\sqrt{k}} \right) + \frac{1}{\sqrt{k$

 $\frac{1}{2} \left( \frac{\log \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}}{\log \mathbf{A} \cdot \mathbf{A}} \right) = \frac{1}{2} \left( \frac{\log \mathbf{A} \cdot \mathbf{A}}{\log \mathbf{A}} \right) = \frac{1}{2} \left( \frac{\log \mathbf{A} \cdot \mathbf{A}}{\log \mathbf{A}} \right) = \frac{1}{2} \left( \frac{\log \mathbf{A}}{\log \mathbf{A}} \right) = \frac{1$ 

- $1, \quad ||_{\operatorname{Idd}}|_{\operatorname{I}^{1}(\operatorname{Idd}) \times \operatorname{Idd}} \leq ||_{\operatorname{Idd}} \leq ||_{\operatorname{Id$
- $2. \qquad |_{\max}|_{\max} |_{\max} |_{\max}$
- 3. The last the second with the second secon
- 4. I CALL OF CARLOS CALLES CALLES CALLES CONTRACTOR CON

- $(1) \quad \underset{\boldsymbol{\lambda}}{\underbrace{\hspace{1cm}}} \quad (1) \quad \underset{\boldsymbol{\lambda}}{\underbrace{\hspace{1cm}}} \quad (2) \quad \underset{\boldsymbol{\lambda}}{\underbrace{\hspace{1cm}}} \quad (3) \quad \underset{\boldsymbol{\lambda}}{\underbrace{\hspace{1cm}}} \quad (4) \quad \underset{\boldsymbol{\lambda}}{\underbrace{\hspace{1$

#### Article 202

The state of the property of the state of th

 $= \langle \mathcal{C}_{\mathcal{A}_{1}, -1} \mathcal{C}_{1}, \dots, \mathcal{C}_{N-1} \mathcal{C}_$ 

- $1, \qquad \underset{\underline{\mathbf{k}}}{\underline{\mathbf{k}}}, \ldots, \underset{\underline{\mathbf{k}}}{\underline{\mathbf{k}}, \ldots, \underline{\mathbf{k}}}, \ldots, \underline{\mathbf{k}}, \ldots,$
- $2. \qquad \underset{\text{local conditions}}{\overset{k}{\underset{\text{local conditions}}{\text{local conditions}}}} k_{\text{local conditions}} = k_{\text{local cond$

The first of the f

 $\lim_{k \to \infty} \frac{1}{2^k} \lim_{k \to \infty} \frac{1}{2^k} \lim_{k$ 

# **Chapter 17 Financial Accounting System and Distribution of Profits**

#### Article 204

A MAN A A COMMENTATION OF A COMMENTATION OF A STATE OF

## Article 205

 $\frac{1}{31} \cdot \frac{1}{1000} \frac{1}{1000$ 

TO A MET CONTRACTOR OF THE STATE OF THE STAT

#### Article 206

#### Article 207

 $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$ 

### Article 208

CONTROL DE COMO DE LA COMO DEL COMO DE LA COMO DEL COMO DE LA COMO DEL COMO DE LA COMO DE LA COMO DE LA COMO DEL COMO DEL COMO DE LA COMO DEL COM

#### Article 210

The second of th

## Article 211

 $\overset{\sim}{\sim} (\text{wa}_{\boldsymbol{\lambda}} \overset{\sim}{\sim} (\boldsymbol{\lambda})) = (\text{wa}_{\boldsymbol{\lambda}} \overset{\sim}{\sim} \boldsymbol{\lambda}) \times (\boldsymbol{\lambda}) \times (\boldsymbol$ 

## Article 212

- 1. I was find how we are for the way to be a first or and the first of the first of
- 2. Colored Colored Andrew Andr

#### Article 213

A Comment of the state of the s

 $\frac{1}{1+\frac{1}{2}}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{$ 

A color tall to a feet or a feet or the feet of the make the talk the or the company

 $\frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2}$ 

 $\frac{1}{\sqrt{25\%}}, \frac{1}{\sqrt{25\%}}, \frac{1}{\sqrt{25\%}},$ 

#### Article 215

The state of local and the state of the stat

1. **→**;

2.

#### Article 216

 $\frac{(\mathbf{z},\mathbf{z})(\mathbf{z},\mathbf{w}) \cdot (\mathbf{z},\mathbf{z}) \cdot (\mathbf{z},\mathbf{z})}{(\mathbf{z},\mathbf{z})(\mathbf{z},\mathbf{z})} \times \mathbf{z} \cdot (\mathbf{z},\mathbf{z}) \cdot (\mathbf{z},\mathbf{z}) \cdot (\mathbf{z},\mathbf{z}) \cdot (\mathbf{z},\mathbf{z}) \cdot (\mathbf{z},\mathbf{z})} \times \mathbf{z} \cdot (\mathbf{z},\mathbf{z}) \cdot (\mathbf{$ 

# Article 217

 $\frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial \mathcal{L}_{\mathcal{A}}} = \frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial \mathcal{L}_{\mathcal{A}}} = \frac{\partial$ 

 $C_{1} = \sum_{i \in \mathcal{I}_{i}} \sum_{i \in \mathcal{I}_{$ 

 $\frac{\partial \mathcal{L}_{\mathcal{A}_{1}} \mathcal{L}_{\mathbf{A}_{2}} \mathcal{L}_{\mathbf{A}_{3}} \mathcal{L}_{\mathbf{$ 

To describe the second second

 $= \frac{1}{2} \left( \frac{1}{2}$ 

- $(2) \qquad (\underline{\mathsf{M}}_{\mathbf{A}}^{\mathsf{A}}) = \underline{\mathsf{M}}_{\mathbf{A}}^{\mathsf{A}} + \underline{\mathsf{M}}_{\mathbf{A}}^{\mathsf{A}$

## Article 218

 $\frac{A}{x} \stackrel{\text{def}}{=} \frac{1}{x} \stackrel{\text{def}}{=} \frac{1}{x}$ 

# Article 219

 $\frac{1}{\sqrt{1-\frac{1}{2}}} \frac{1}{\sqrt{1-\frac{1}{2}}} \frac{1}{\sqrt{1-\frac{$ 

# Chapter 18 Appointment of an Accounting Firm

#### Article 220

The state of the s

TO SMEAN OF A THE MEN WE WE ARE COME TO ME WAY A STATE OF THE STATE OF THE SMEAN AS A STATE OF THE SAME OF THE SMEAN AS A STATE OF THE SMEAN AS A STAT

## Article 221

The local price of the state of the second s

# Article 222

 $A_{(\frac{1}{4}, \frac{1}{4}, \frac{1}{4$ 

 $1. \qquad \mathcal{C}_{k} \mathcal{C}_{k} = \sum_{i=1}^{k} \mathcal{C}_{k} \mathcal{C}_{k}$ 

- $2. \qquad \sum_{k=1}^{k} \sum_{i=1}^{k} \sum_{k=1}^{i} \sum_{i=1}^{k} \sum_{k=1}^{k} \sum_{i=1}^{k} \sum_{i=1}^{k}$
- 3. A CALL OF A CALL MAN A CONTRACT A A CALL OF A CONTRACT MAN A CONTRACT MAN A CALL OF A CALL OF

## Article 224

To the first of the form of the first of the

There I look I l

## Article 225

The state of the s

# Article 226

 $\frac{1}{1-(1+\alpha)} \left( \frac{1}{1-(1+\alpha)} \frac{1-(1+\alpha)} \frac{1}{1-(1+\alpha)} \frac{1}{1-(1+\alpha)} \frac{1}{1-(1+\alpha)} \frac{1}{1-(1+\alpha)}$ 

The same and the s

- $(1) \qquad (2) \qquad (3) \qquad (4) \qquad (4)$
- (2) K Company of the contract of the contract
  - $1. \qquad \frac{k}{\mathbf{A}_{n}} \mathbf{x}_{n} \cdot \mathbf{x}_{n} \cdot$
  - $2. \qquad \underset{\leftarrow}{\underbrace{ \left\langle \gamma_{1}, \gamma_{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{4}$

- $(4) \qquad \underset{\mathbf{X}}{\sim} (\mathbf{1}_{(1)} \times \mathbf{1}_{(2)} \times \mathbf{1}_{(2)}$ 
  - 1. The state of th
  - 2. The filler was a substitute of the state of the state
  - 3. The Calmark and Carry Carry Carry Contagner.

A CONTRACTOR OF A CONTRACTOR O

# Article 227

The state of the s

- - $1, \qquad \underset{\mathcal{L}}{\longrightarrow} 1, \quad C_{i,1}C_{i,2}C_{i,3}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}C_{i,4}$
  - 2. WARREN STEWART OF WARRENCE .
- (2)  $\frac{1}{1} \frac{1}{N} \frac{1}{N}$
- (3) The state of t

# Chapter 19 Merger, Division, Dissolution and Liquidation

#### Section 1 Merger and Division

#### Article 228

 $\underbrace{H_{i,j}(\mathcal{L}_{i,j})}_{\mathcal{L}_{i,j}(\mathcal{L}_{i,j})} \underbrace{\mathcal{L}_{i,j}(\mathcal{L}_{i,j})}_{\mathcal{L}_{i,j}(\mathcal{L}_{i,j})} \underbrace{\mathcal{L}_{i,j}(\mathcal{L}_{i,j})}_{\mathcal{L}_{i,j}(\mathcal{L}_{i,j})} \underbrace{H_{i,j,k}(\mathcal{L}_{i,j,k},\mathcal{L}_{i,j})}_{\mathcal{L}_{i,j}(\mathcal{L}_{i,j,k},\mathcal{L}_{i,j})} \underbrace{\mathcal{L}_{i,j,k}(\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j,k},\mathcal{L}_{i,j$ 

#### Article 229

I have the I have a hour to be a hour to be a first of the page of the second and the second as a seco

The state of the s

## Article 230

A. A. In the same of the same

THE RESERVE OF THE RESERVE OF THE PROPERTY OF

#### Article 231

 $\frac{\partial \left( \mathbf{x}_{1} \right) \cdot \partial \left( \mathbf{x$ 

#### Section 2 Dissolution and Liquidation

## Article 232

The second of th

- $(1) \quad A_{(x_1, \dots, x_n)} \stackrel{\mathcal{S}^n}{\longrightarrow} \stackrel{\mathcal{S$
- (2)  $(X_{\mathbf{A}_{1}}, X_{\mathbf{A}_{1}}, X_{\mathbf{A}_{$
- $(4) \qquad , \qquad \underset{\mathbf{M}}{\mathbf{X}} \times \mathbf{Y} \rightarrow \underset{\mathbf{X}}{\mathbf{K}} \stackrel{\mathbf{K}}{\leftarrow} \mathbf{X} \stackrel{\mathbf{K}}{\leftarrow} \underbrace{\mathbf{K}}_{\mathbf{Y}} \stackrel{\mathbf{K$
- $(5) \qquad (4) \qquad (4)$
- (6)  $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

## Article 233

#### Article 234

MANUAL TO THE STATE OF THE STAT

 $\frac{k}{(-1)^{n}} \frac{k}{\lambda} \frac{k}{$ 

The transfer of the transfer o

THE LAND COMMENT OF A STATE OF A

 $\frac{1}{2} \frac{1}{2} \frac{1}$ 

## Article 236

repolition of minimum of the real property of the real control of the second of the se

- $(1) = \lim_{\lambda \to \infty} \sum_{i \in \mathcal{N}_{i}} \sum_{k \in \mathcal{N}_{i}} \sum_{k$
- $(2) = {}_{1} , {}_{1} {}_{1} {}_{2} {}_{3} {}_{4} {}_{4} {}_{5} {}_{5} {}_{1} , {}_{5} {}_{5} {}_{7} , {}_{1} {}_{7} , {}_{7} {}_{1} {}_{7} , {}_{1} {}_{7} , {}_{1} {}_{1} {}_{1} {}_{2} {}_{3} {}_{3} , {}_{1} {}_{1} , {}_{1} {}_{2} {}_{3} {}_{3} , {}_{1} {}_{3} , {}_{1} {}_{3} {}_{3} , {}_{2} {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} {}_{3} , {}_{3} {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}_{3} , {}$
- $(4) = \frac{1}{12} \left( \sum_{i=1}^{n} \frac{1}{n} \sum_{i=1$
- $(5) \qquad {}_{|\mathbf{X}^{\mathbf{C}_{1}}\mathbf{I}_{1}} \qquad \mathcal{C}_{|\mathbf{I}^{\mathbf{C}_{1}}\mathbf{I}_{2}} \qquad \cdots ;$
- $(6) \qquad {}_{V^{-1} \hookrightarrow V} \longleftarrow {}_{V} \longleftarrow {}_{V} \longrightarrow {}_{$

#### Article 237

The last the second of the last the las

 $\frac{d^{2} \mathcal{L}_{1} \mathbf{1}_{1} \mathbf{1}_{2} \mathbf{1}_{1} \cdots \mathbf{1}_{2} \mathcal{L}_{1} \mathcal{L}_{1} \cdots \mathcal{L}_{1} \mathcal{L}_{2} \mathbf{1}_{2} \cdots \mathcal{L}_{1} \mathcal{L}_{1} \mathcal{L}_{2} \cdots \mathcal{L}_{1} \mathcal{L}_{2} \mathcal{L}_{2} \cdots \mathcal{L}_{2} \mathcal{L}_{2} \mathcal{L}_{2} \mathcal{L}_{2} \cdots \mathcal{L}_{2} \cdots \mathcal{L}_{2} \mathcal{L}_{2} \cdots \mathcal{L}_{2} \cdots \mathcal{L}_{2} \cdots \mathcal{L}_{2} \mathcal{L}_{2} \cdots \mathcal{L}_{2} \cdots$ 

The contraction of the state of the state of the contraction of the state of the st

 $\frac{1}{2} \left( \frac{1}{2} \left$ 

 $\frac{k_{1}^{2}-k_{2}^{2}-k_{3}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_{4}^{2}-k_$ 

# Article 239

# Article 240

 $\frac{1}{2} \frac{1}{2} \frac{1}$ 

A CONTROL TO THE TAXABLE CONTROL OF TAXABL

 $\frac{1}{1} = \frac{1}{1} = \frac{1}$ 

# **Chapter 20** Amendment to Articles of Association

#### Article 241

 $C_{1} = \{ \underbrace{A_{1} + A_{2} + A_{3} + A_{4} +$ 

## Article 242

THE RESERVE OF THE RE

Amende man and Artificial American and a second of the sec

### Article 244

 $\frac{\partial \mathcal{L}_{\mathbf{A}} \mathcal{L}_{\mathbf{A}}$ 

- $(1) \qquad \underset{K}{\underset{K}} \times \underbrace{K}_{i} = \underbrace{K}_{i} = \underbrace{K}_{i} \times \underbrace$

# Article 245

# Chapter 21 Notice

## Article 246

A CARLO COME COME CONTRACTOR OF THE CONTRACTOR O

- $(1) \qquad \underset{\Lambda}{\longleftarrow} \; \mathcal{K} \; \ldots \; ;$
- (2) ...;
- (3) ___ _ _ _ _ _ _ ;
- $(4) \quad \text{i.e.} \quad \text{i.e.}$

# **Chapter 22 Settlement of Disputes**

## Article 250

The state of the s

- - The state of the s
  - The same of the sa
- $(3) \qquad \underset{k \to \infty}{\longrightarrow} \qquad \underset{k \to \infty}$
- $(4) \qquad \text{if } \chi \stackrel{\text{def}}{=} (-1) \chi \stackrel{\text{def}}{=} (\chi \stackrel{\text{def}}{=} (-1) \chi \stackrel{\text{def}}{=}$

# **Chapter 23 Supplementary Articles**

## Article 251

#### **Definition**

- $(1) \qquad \underset{k}{\overset{A^{\prime\prime}}{\longrightarrow}} \stackrel{A^{\prime\prime}}{\longrightarrow} \stackrel{A^$
- $(2) \quad A_{(\frac{1}{2},\frac{1}{4})} = C_{(\frac{1}{4})} C_{(\frac{1}{4})$
- $(3) \quad {}_{\underline{A}} A_{+++} = (-1) \left[ \frac{1}{|\underline{A}|^{2}} + \frac{1}{|\underline{A}|^{2}$

## Article 252

 $\frac{A_{i,j}^{\prime}}{A_{i,j}^{\prime}} = \frac{A_{i,i,j}}{A_{i,i,j}^{\prime}} \frac{A_{i,i,j}^{\prime}}{A_{i,i,j}^{\prime}} \frac{$ 

#### Article 253

The first of the second of the

#### Article 254

# Article 255

white the territory of the territory of the Alexander Allen Alexander